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ABSTRACT soil moisture is also important to predict river stage and
reservoir volume, as well as forecast flood crests and low

Through its influence on the mobility of troops and flows, flash-flood risk in small catchments, and low-level
materiel, the interaction between weather and landscape is fog formation. From the warfighter's perspective,
of primary importance to the effectiveness and timeliness characterization of the surface soil moisture is also critical
of Army operations. More specifically, knowledge of the to electro-optical weapon systems navigation, and mine
spatial and temporal variability in soil moisture over large placement and detection.
areas, at the scale of tactical operations (-100 in), has the
potential to dramatically improve trafficability Presently, assessment of trafficability is often done
assessments. The majority of Army operations are through analysis of field-based soil moisture
conducted in regions where field observations of soil measurements at points within a region. However,
moisture are sparse in space and/or time or completely Entekhabi et al. (1996) concluded that these point scale
unavailable. However, remotely sensed information about data represent the soil moisture only in very localized
the factors that affect the spatial variability in soil areas. The influence of local microtopography, soils and
moisture over a range of spatial scales are available. We vegetation, all of which demonstrate significant spatial
present here a framework by which we can fuse these heterogeneity, make interpretation of these localized
remotely sensed data representing the various factors measurements difficult from the perspective of
affecting soil moisture through the existing tRIBS trafficability over broader regions. Near surface soil
hydrologic model to produce forecasts of the spatial moisture is remotely sensed by a number of operational
distribution of soil moisture. Using data assimilation satellites, but at coarse spatial scales and long temporal
techniques these forecasts can be dynamically updated intervals from the perspective of Army operations.
when remotely sensed observations of soil moisture using
become available. When used in conjunction with tactical Using models to predict the spatial distribution of soil
decision aids, such as IWEDA, the proposed fusion of moisture at operational spatial scales (-100 in), and how
data through tRIBS has the potential to improve it changes over operational time scales can improve
trafficability assessments and other soil moisture trafficability assessments. Soil-vegetation-atmosphere
dependent Army operations. transfer (SVAT) models (e.g., Peters-Lidard et al., 1997)

can predict soil moisture in a dynamic and spatially
1. INTRODUCTION distributed fashion over large regions, but at resolutions

that are too coarse for detailed trafficability assessment
The interaction between weather and the land surface (e.g., 1 kin). Furthermore, these SVAT models are unable

is a limiting factor in the effectiveness and timeliness of to capture the role of topography in redistributing soil
Army operations. In particular, soil moisture is a dynamic moisture in the saturated and unsaturated zones.
land surface state variable that reflects the interaction Distributed watershed hydrology models have physically
between precipitation and the hydrologic response of a based parameterizations to model the redistribution of soil
basin and influences the ease of troop and vehicle moisture in the subsurface, but need to be constrained to
movement. observations to reduce the uncertainty in the forecast.

Army applications require information on soil We present here a framework to forecast soil
moisture to forecast trafficability for tactical vehicles, moisture at operational scales by assimilating
ground force deployment, and mission logistical observations of remotely sensed soil moisture data with a
approach. Tactical decision makers can more readily distributed watershed hydrology model. When combined
determine possible enemy or friendly lines of approach with empirical models to predict remold cone index (RCI)
with the aid of detailed and thorough trafficability as a function of soil moisture and properties, a map of
assessment. For example, moisture from the surface to 5 RCI can be produced which can then be considered
cm in depth is important for surface traction, while against the vehicle cone index (VCI) for a particular
moisture from 5-10 cm in depth impacts light armor vehicle type. In similar fashion to the Integrated Weather
vehicle speed, and moisture from 10-30 cm can impact Effects Decision Aid (IWEDA) program, the end product
multiple pass trafficability for tanks. Moisture from 30-80 of this framework is a time-evolving map of
cm in depth affects large scale operations. Furthermore, Green/Amber/Red conditions for a particular vehicle type,
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Fig. 1: Soil moisture variability is effected by several factors which act over
varying spatial scales, but each of which have corresponding sources of remotely
sensed data.

but at spatial scales of tactical decision making. In the understanding how these data affect soil moisture
following we discuss the role of topography, vegetation observation and modeling are critical developments to
and precipitation in the spatial distribution of soil this work.
moisture. This is followed by an outline of the distributed
hydrologic model we employ to simulate soil moisture Fundamentally, precipitation delivers moisture to a
through space and time. The fusion of remotely sensed basin. When viewed as spatial fields over extensive
soil moisture data with the hydrologic model through a domains, precipitation events may drastically range in
data assimilation framework is subsequently addressed. size or exhibit two orders of magnitude of internal
Finally, we present potential applications of this work to variability. Soils, landuse and vegetative cover impact soil
produce trafficability assessments at tactical operation moisture through their influence on the redistribution of
scales. water in the subsurface and the depletion of water from

storage through evapotransipration. Topography also
2. FACTORS AFFECTING SOIL MOISTURE serves as a control on the lateral redistribution of water in

the subsurface by providing gravitational potential for
Soil moisture is a land surface variable which links flow through porous media. Vegetation, landuse and

global water, energy, and biogeochemical balance. As macroscale variation in soil characteristics affect soil
such, the distribution of soil moisture at a point changes moisture variability over domains ranging in size from
through time is a function of several factors acting across hundreds of meters to tens of kilometers. However, local
a range of spatial and temporal scales (Rodriguez-Iturbe topography controls soil moisture variability at spatial
et al., 1995; Schmugge and Jackson, 1996). Among the scales critical to detailed trafficability assessments.
more important factors affecting the spatial variability of
soil moisture are topography, vegetation, and The redistribution of water in the subsurface has been
precipitation. Fig. 1 demonstrates the influence these previously shown to occur preferentially in a downslope
factors have on the distribution of soil moisture at their direction, underscoring the importance of adequate
characteristic scales. While presumably, there exists some representation of topography in soil moisture modeling. In
scales over which the effects of multiple factors can particular, the downslope movement of water in soils with
overlap, remotely sensed data corresponding to each sloping layers will be proportional to the slope itself and
source of variability can provide information in the vertical flux of water in the subsurface (Zaslavsky and
inaccessible locations and across extensive domains. Sinai, 1981). Furthermore, as shown by Yeh et al.
Merging these data to develop value-added products (1985ab,c) for randomly interbeded layers of soil with
which aid in trafficability assessments at tactical different textures, the horizontal hydraulic conductivity
operation scales is the primary focus of this work. Hence, can be up to six orders of magnitude greater than the
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Fig. 2: A conceptual diagram of the tR[BS model framework, and the
hydrologic processes it encompasses.

vertical hydraulic conductivity. When considered The TIN framework allows the user to preserve important
together, these factors demonstrate that moisture in the topographic characteristics such as individual ridges and
subsurface moves preferentially away from ridges toward valleys at fine resolutions while allowing planar regions
valley bottoms (Famiglietti et al., 1998; Western et al., to be represented at coarser resolutions. The advantage of
1999). Topographic position, hydraulic properties of the such a computational surface is that fine-scale features are
soil, and its wetting-drying history thus control the spatial preserved without spending equal computer processor
patterns in soil moisture, resources on regions with relatively homogeneous

topography. Intersections of the TIN mesh, which
3. HYDROLOGIC MODEL OUTLINE correspond to the centroid of each Voronoi polygon,

comprise the computational nodes. The region bounded
To simulate the response of the land surface to by the Voronoi polygon and the soil column represents a

spatially distributed high-resolution precipitation data we finite-volume element, with interfaces between adjacent
employ a distributed parameter hydrologic computer Voronoi cells serving as control surfaces through which
model which uses a geographic information systems fluxes are calculated. tRIBS includes physically-based
(GIS) representation of a watershed and its physical parameterizations describing the processes of canopy
attributes as a computational surface. The computational interception, evapotranspiration, infiltration, lateral
surface used by the model is a triangular irregular redistribution of soil moisture, and runoff routing in a
network (TIN), which allows for representation of basin spatially explicit fashion.
topography at multiple scale resolutions. The TIN-based
Real-time Integrated Basin Simulator (tRIBS) is a fully Canopy interception is accomplished using a model
distributed, physically-based, dynamic basin hydrology that relies on species dependent retention capacities
computer model that takes as input readily available (Rutter et al., 1971, 1975). Drainage from the canopy is
geospatial data. A full description of the tRIBS model and accounted for following Shuttleworth (1979).
its application to several test basins is discussed in detail Evapotranspiration, as well as latent, sensible, and ground
by Ivanov et al. (2004), but a brief introduction to the heat fluxes are modeled using energy budget methods.
model is provided here. A schematic diagram shows
processes incorporated into the tRIBS model as well as a Evapotraspiration from bare soil and vegetated
representation of the TIN-based computational surface surfaces is limited by soil water content in the top soil
(Fig. 2). layer and root zone. A kinematic approximation for

unsaturated flow (Cabral et al., 1992, Garrote and Bras,
As previously mentioned tRIBS relies on a 1995) underlies the infiltration method of tRIBS, and

triangulated irregular network and its associated Voronoi different parameterizations are used for ponded and
(or Thiessen) polygon mesh as its computational surface, unsaturated infiltration.
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Fig. 3: Mean soil moisture content in the top 1 m of soil over a 7-year
simulation for the Blue River basin, OK.

STATSGO, etc.), land use/land cover (e.g., NLCD, etc.),
Lateral redistribution of soil moisture in the initial water table elevations (e.g., following Sivapalan et

unsaturated zone occurs during both storm events and al., 1987), precipitation data (e.g., NEXRAD, etc.), and
interstorm intervals. Lateral fluxes in the saturated zone meteorological data (e.g., temperature, etc.).
are computed using an approach that explicitly routes
flow in a cell-to-cell fashion. Within a cell saturation The output of a tRIBS simulation for soil moisture
excess runoff and groundwater return flow are generated applications is a map showing the soil moisture in each
by considering the difference between influx and outflux Voronoi cell at a particular timestep in the simulation
of water within each finite volume cell at each timestep. (Fig. 3). In a later section we present a framework for

translating this map of soil moisture into a map of
Infiltration excess runoff is generated when the Green/Amber/Red zones for a particular vehicle.

throughfall exceeds infiltration capacity, and perched
subsurface storm flow occurs when water from the Ivanov, et al. (2004) demonstrated tRIBS capability
unsaturated zone of a cell is discharged onto the surface of discerning the role the relationship between topography
of the downslope neighbor. Reinfiltration of runoff is not and the frequency of occurrence of different runoff
considered. Overland flow at a computational element is generation mechanisms for regions within the Blue River
partitioned into hillslope runoff and channel runoff, basin characterized by different groundwater dynamics.
Travel times of hillslope runoff are computed using a Each panel in Fig. 4 shows the frequency of occurrence of
velocity parameter that must be calibrated for individual a particular runoff generation mechanism versus the so-
watersheds. Channel runoff is routed using the kinematic called topographic index, ln(A/tan/5), where A is the
wave equation, assuming channels have approximately contributing drainage area to a point, and tanf# is the local
rectangular cross-sectional geometries and that the ground surface slope. Larger values of ln(A/tan/3) are
Manning equation is valid. associated with a tendency for greater soil moisture. The

different markers in the plots of Fig. 4 group dominant
As input, tRIBS requires digital elevation models groundwater dynamics regions. All four panels in Fig. 4

(e.g., USGS NED, SRTM, etc.), soil data (e.g., show that frequency of occurrence of the different runoff
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Fig. 4: Frequency of occurrence of four different runoff generation mechanisms in the Blue
River basin, OK: (a) infiltration excess, (b) saturation excess, (c) perched subsurface
stormflow, and (d) groundwater flow.

generation mechanisms depends on the local topographic 4. SOIL MOISTURE DATA ASSIMILATION AND
characteristics. Fig. 4(a) shows that infiltration excess FUSION
runoff is generated in regions serving to recharge the
groundwater aquifer. However, the propensity to have 4.1 Remotely sensed soil moisture data
infiltration excess in the recharging regions is likely the
result of the soils being composed of predominantly clays Soil moisture strongly influences the emission of low
and silts in those regions (Ivanov et al., 2004). The frequency microwave radiation. In particular, the
frequency of occurrence of runoff generation mechanisms emissivity of soils varies from approximately 0.6 for wet
in Figs. 4(b),(c), and (d), which all require a saturated soils to 0.9 in dry soils in the L-band (- 1.4 GHz) of the
ground surface, is highest in regions acting as a source of spectrum (Njoku and Entekhabi, 1996). This wide range
significant groundwater discharge (Ivanov, et al., 2004). of emissivity values for soils translates to a dynamic
However, the frequency of occurrence of perched range in the radiobrightness temperature observed by
subsurface stormflow and groundwater flow exhibits a microwave radiometers that is larger than the
wider range of variability than the frequency of radiometer's noise sensitivity. Passive microwave remote
occurrence of the other two runoff generation sensing of soil moisture is a direct benefit of this large
mechanisms. These results depict the ability of the tRIBS signal-to-noise ratio (Njoku and Entekhabi, 1996).
model to depict the spatial distribution of the relevant Greater vegetation penetration and lessened atmospheric
runoff generation mechanisms and its relationship to attenuation at longer wavelengths makes the low-
topography and groundwater dynamics. frequency microwave range of 1-3 GHz (30-10 cm

wavelength) best suited to soil moisture sensing (Njoku
and Entekhabi, 1996).
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model and observational estimates, each weighted by its
Several complications, however, make obtaining associated uncertainty (Gelb, 1974).

remotely sensed soil moisture observations difficult.
Specifically, the required antenna size to sense soil Specifically applied to this work, the tRIBS model
moisture at spatial scales appropriate to trafficability propagates the soil moisture state given
assessment is problematic when sensing at lower hydrometeorological forcing such as precipitation,
frequencies. NASA developed the Electronically Scanned temperature and cloudiness. An algorithm is used to
Thinned Array Radiometer (ESTAR) concept to, among translate the soil moisture state evolved by tRIBS to
other tasks, sense soil moisture at a single frequency (1.4 microwave radiobrightness temperatures retrieval when
GHz). The ESTAR sensor could potentially provide soil remotely sensed observations of the soil state become
moisture data at a scanning swath width of approximately available. Existing grey body radiative transfer models
1200 kin, ground spatial resolution of approximately 40 (e.g., Ulaby et al., 1986, Galantowicz et al., 1999) are
km and global mapping capability every 3 days (Levine et examples of algorithms that could be implemented in the
al., 1989; Swift, 1993). However, real-time ground tRIBS model.
military operations are only partially supported by soil
moisture assessment at these spatiotemporal resolutions. An additional step is required to resolve the
Other space-born passive microwave sensors, operating at inconsistency between the spatial scales at which tRIBS
high 6.6-30GHz frequencies (Gloersen and Barath, 1977; simulates soil moisture (10 - 500 m) and those at which
Hollinger et al., 1990; Kummerow et al., 2000), as well as space-born radiometers typically observe soil moisture
currently planned L-band sensors (Njoku et al., 1999) (10 - 100 km). This inconsistency of spatial scales is
may provide data at ground spatial resolutions ranging overcome through the use of optimal downscaling (i.e.
from 10 to 100 km. A more effective use of these data transfer of information from larger to smaller spatial
would be to fuse them with modeled soil moisture data scales) procedures. Previous work has successfully
through the tRIBS model to produce value-added developed procedures to accomplish four-dimensional
trafficability assessment aids. soil moisture data assimilation into a hydrologic model

(Reichle et al., 2001, 2002).
4.2 Data fusion and assimilation

Complete implementation of data assimilation
Two important sources of estimates of soil moisture frameworks can be frustrated by the large dimensions of a

have been described here: (1) the soil moisture state problem such as the one being considered. Producing
evolved by tRIBS through time, and (2) remotely sensed estimates that preserve the benefits of merging model
observations of near surface soil moisture taken at a forecast information with observational data, but which
particular instant in time. These two distinct forms of soil are not necessarily statistically optimal, is one way this
moisture state estimation carry uncertainty associated problem can be overcome. Such estimates are known as
with their respective sources. suboptimal solutions. This approach is known as a data

fusion technique. The desired outcome of this work is to
The evolved soil moisture estimate is subject to what produce a combined data fusion and assimilation

is commonly referred to as model uncertainty. This mechanism that can interface with modular models
uncertainty arises from, among other sources, the elements developed in this or other projects, include both
parameterization of the various hydrological processes, dynamic and static sources of information, and be applied
uncertainty in parameter values, numerical round-off to models of large dimension and computational demand.
error, and discretization of the land surface into a
computational surface. On the other hand, the remotely 5. TRAFFICABILITY AND SOIL MOISTURE
sensed observations of soil moisture are subject to so-
called observational or measurement uncertainty. This is Translating the estimated soil moisture state into an
uncertainty that is attributed to the sensitivity of the actionable variable from the perspective of Army
microwave radiometer, data retrieval from the satellite, operations requires several additional steps. The first
and retrieval in the estimation of soil moisture from the involves combining soil properties with the soil moisture
radiobrightness temperature. state estimate to produce a variable related to soil strength

and bearing capacity.
Using optimal estimation theory that is well

established in the hydrologic sciences, we can produce an One common method of measuring in situ soil
optimal estimate of the soil moisture state by fusing the strength is through the use of a soil profile cone
remotely sensed observations of soil moisture with the penetrometer (PCP). The PCP is a field instrument
evolved soil moisture estimate from tRIBS. This soil comprised of slender rod approximately one meter in
moisture state estimate is optimal in the sense that it is a length with a cone shaped end that measures the
minimum error estimate produced as a combination of the compressive and frictional resistance of the soil as the



Trafficability index versus soil moisture CONCLUSIONS

Soil moisture is a dynamic land surface variable that
demonstrates significant spatial variation as a function of

x70 variability in soils, vegetation and landuse as well as
topographic position. Through its relationship to soil

21 5strength and bearing capacity, soil moisture is a limiting
Z5 factor the spatial scope and timing of Army operations.
=40 Conversely, knowing the evolution of soil moisture
2 30 characteristics of a region at time and space scales of

tactical operations (-100 m) has the potential to
dramatically improve trafficability assessments. We
present a framework by which to fuse remotely sensed

0 soil moisture products with the soil moisture state evolved
slMoisture [%V) by a distributed parameter hydrologic model to produce

Fig. 5: Trafficability index (RCI) versus volumetric value-added products to aid in detailed trafficability
soil moisture. For the M1A2 Abrams, green-amber assessment of Army operations. This framework involves
threshold is based on 50-pass VCI, and amber-red dynamically updating the soil moisture field evolved by
threshold for 1-pass VSI. the tRIBS model when remotely sensed soil moisture

observations become available using well established data
assimilation procedures. The net effect of this fusion of

PCP is forced vertically downward into the soil column, models in data is to combine information about soil
This resistance, typically reported in units of force per moistures from independent sources to reduce the
unit area, is referred to as the cone index (CI). uncertainty in the estimate of the soil moisture state.
Multiplying CI by a measure of soil remoldability, Through models that relate remold cone index (RCI) to
produces the remold cone index (RCI) which is a function soil classification and moisture, the spatial distribution of
of the soil density, type and moisture content (Mason, soil moisture can be translated into the spatial distribution
2004). Empirical data suggests that RCI tends to decay of RCI. Then, when considering the spatial distribution of
with increasing soil moisture, and is sensitive to RCI against the vehicle cone index (VCI), an actionable
cumulative rainfall (Mason, 2004). Although the map of Green/Amber/Red conditions throughout a given
relationship varies by vehicle, RCI is closely related region can be produced.
important tactical variables such as vehicle average speed
and momentum (Mason, 2004). ACKNOWLEDGEMENTS
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